1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
from pyDigitalWaveTools.vcd.parser import VcdParser
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import json
def parse_vcd_dataframe(filename):
"""Parses a SPECS VCD file and returns simulation data as a DataFrame.
Args:
filename (str):
The path to the VCD file.
Returns:
simulation_data_df:
The simulation data with signals as columns and time/wavelength as rows.
"""
with open(filename) as vcd_file:
vcd = VcdParser()
vcd.parse(vcd_file)
data = vcd.scope.toJson()
# print(json.dumps(data, indent=4, sort_keys=True))
simulation_data_df = pd.DataFrame() # initialize empty dataframe
top_level_name = 'SystemC'
top_scope = None
for child in data['children']:
if is_scope(child) and child['name'] == top_level_name:
top_scope = child
break
if top_scope is None:
raise RuntimeError(f'Top level scope not found in {filename}')
assert('name' in top_scope.keys())
assert('type' in top_scope.keys())
assert('children' in top_scope.keys())
assert(top_scope['type']['name'] == 'struct')
scopes = []
probes = []
pdets = []
values = []
for child in top_scope['children']:
if is_scope(child):
scopes.append(child)
if is_probe(child):
probes.append(child)
if is_pdet(child):
pdets.append(child)
else:
values.append(child)
# print(f'top level values: {[x["name"] for x in values]}')
# print(f'top level scopes: {[x["name"] for x in scopes]}')
# print(f'top level probes: {[x["name"] for x in probes]}')
is_wl_sweep = check_wl_sweep(probes)
has_wl = False
save_wl = False
df_probes = pd.DataFrame()
if len(probes) > 0:
for i,probe in enumerate(probes):
probe_name = probe['name']
for j,signal in enumerate(probe['children']):
signal_name = signal['name']
full_name = probe_name + '/' + signal_name
save_wl = is_wl_sweep and not has_wl
if (not signal_name=='wavelength' or (signal_name=='wavelength' and save_wl)):
current_signal_df = pd.DataFrame()
current_signal_df['tick'] = vcd_get_ticks_vector(signal)
if signal_name=='wavelength':
has_wl = False # this variable set to true will save WL vector only once
full_name = signal_name # wavelength should be saved independent of probe
current_signal_df[full_name] = vcd_get_data_vector(signal)
if i==0 and j==0:
df_probes = current_signal_df
else:
df_probes = df_probes.merge(current_signal_df, how='outer')
df_probes = df_probes.sort_values('tick')
df_probes = df_probes.reset_index(drop=True)
if not is_wl_sweep: # making sure that time goes first
df_probes.insert(0, 'time', df_probes['tick'] * vcd_get_multiplier(vcd))
else: # making sure that wl goes first
first_column = df_probes.pop('wavelength')
df_probes.insert(0, 'wavelength', first_column)
# we don't need ticks anymore
df_probes = df_probes.drop(columns=['tick'])
# getting rid of the NaNs: for time domain we repeat the last valid value,
# for freq domain we interpolate linearly
if is_wl_sweep:
df_probes = df_probes.drop(df_probes.loc[df_probes['wavelength']== 0].index.values)
df_probes = df_probes.interpolate()
else:
df_probes = df_probes.fillna(method='ffill')
# Same with pdetectors
df_pdet = pd.DataFrame()
if not is_wl_sweep and len(pdets) > 0:
for i,pdet in enumerate(pdets):
pdet_name = pdet['name']
for j,signal in enumerate(pdet['children']):
if signal["type"]["name"] == "struct":
continue
signal_name = signal['name']
full_name = pdet_name + '/' + signal_name
# Add data to a temporary DF
current_signal_df = pd.DataFrame()
current_signal_df['tick'] = vcd_get_ticks_vector(signal)
current_signal_df[full_name] = vcd_get_data_vector(signal)
if df_pdet.empty:
df_pdet = current_signal_df
else:
df_pdet = df_pdet.merge(current_signal_df, how='outer')
df_pdet = df_pdet.sort_values('tick')
df_pdet = df_pdet.reset_index(drop=True)
if False:
# Add a point next to first value from photodetector
# to ensure 'step' appearance (as its more correct)
print(df_pdet.head())
df_pdet.loc[-1] = df_pdet.loc[0]
df_pdet.loc[0, 'tick'] = df_pdet.loc[1]['tick']
df_pdet = df_pdet.sort_values('tick')
df_pdet = df_pdet.reset_index(drop=True)
print(df_pdet.head())
# making sure that time goes first
df_pdet.insert(0, 'time', df_pdet['tick'] * vcd_get_multiplier(vcd))
# we don't need ticks anymore
df_pdet = df_pdet.drop(columns=['tick'])
# getting rid of the NaNs: for time domain we repeat the last valid value,
df_pdet = df_pdet.fillna(method='ffill')
print('--- Contents of simulation ---')
print ('In df_pdet')
for col in list(df_pdet.columns):
print('\t',col)
print ('In df_probes')
for col in list(df_probes.columns):
print('\t',col)
if is_wl_sweep:
print('Type of simulation: FD')
else:
print('Type of simulation: TD')
print('------------------------------')
return df_probes, df_pdet
def verify_wl_sweep(simulation_data):
"""Checks the type of simulation based on the processed data.
Args:
simulation_data (DataFrame):
Data recovered using parse_vcd_xxxx methods.
Returns:
is_wl_sweep(bool):
True if it is a wavelength sweep, False otherwise.
"""
is_wl_sweep = False
if isinstance(simulation_data,pd.DataFrame):
is_wl_sweep = list(simulation_data.columns)[0] == 'wavelength'
else:
print('Error: Invalid simulation data')
return is_wl_sweep
def find_by_time(simulation_data,colname,time):
"""Finds specific time values from the processed data
Useful when you want to a datapoint of a specific moment
but there was no transition there so it is not necessarily
contained in the data frame.
As it is an event-based simulator, it means that if
the exact time that you want is not there, the closest
previous value is the correct one, and this function gets it
automatically for you.
Args:
simulation_data (DataFrame):
Data recovered using parse_vcd_xxxx methods.
colname (string):
Name of the column that you want to extract data from.
time (float):
Time that you want to get your sample.
Returns:
value(float):
Sample value at the specified time..
"""
# first check if exact match is present
# else, gets most recent value smaller than
# the specified time
value = None
exact_match_df = simulation_data.loc[simulation_data['time'] == time]
if exact_match_df.empty:
previous_match_df = simulation_data.loc[simulation_data['time'] <= time]
previous_match_df = previous_match_df.tail(1)
value = previous_match_df[colname].values[0]
else:
value = exact_match_df[colname].values[0]
return value
######### The next functions are intended for internal use #########
def is_scope(data):
return data['type']['name'] == 'struct'
def is_pdet(data):
if not is_scope(data):
return False
allowed_attrs = ["readout", "readout_no_interference"]
for child in data['children']:
if child['name'] not in allowed_attrs:
return False
return True
def is_probe(data):
if not is_scope(data):
return False
allowed_attrs = ["wavelength", "power", "abs", "phase", "real", "imag"]
for child in data['children']:
if is_scope(child):
# Probe contains only values
return False
base_name = child['name']
# For MLprobe ignore what's after the "@"
# If there is no "@", it remains the full name
i_last_at = base_name.rfind('@')
if i_last_at > 0:
base_name = base_name[0:i_last_at]
if base_name not in allowed_attrs:
return False
return True
def check_wl_sweep(probes):
for probe in probes:
# see if wavelength is part of probe attributes
attrs = ["wavelength", "power", "abs", "phase"]
lengths = {a:-1 for a in attrs}
for signal in probe['children']:
for a in attrs:
if signal['name'] == a:
lengths[a] = len( signal['data'] )
match = False
if lengths[attrs[1]] != -1:
match = lengths[attrs[0]] == lengths[attrs[1]]
if lengths[attrs[2]] != -1:
match = lengths[attrs[0]] == lengths[attrs[2]]
if match and lengths[attrs[0]] != 1:
return True
return False
def vcd_get_data_vector(signal):
data = np.array([float(tup[1][1::]) for tup in signal['data']])
return data
def vcd_get_ticks_vector(signal):
ticks = np.array([tup[0] for tup in signal['data']])
return ticks
def vcd_get_multiplier(vcd):
timescale_list = vcd.timescale.split()
base_scale = float(timescale_list[0])
unit = timescale_list[1][0]
multipliers = {
's': 1.0,
'm': 1e-3,
'u': 1e-6,
'n': 1e-9,
'p': 1e-12,
'f': 1e-15,
}
# returns value in seconds
return base_scale * multipliers[unit]
|