1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
|
#include <octane_segment.h>
#define __modname(SUFFIX, IDX) \
((""s + this->name() + "_" + SUFFIX + to_string(IDX)).c_str())
using std::size_t;
using std::pow;
void OctaneSegment::init_ports()
{
// --------------------------------------------------------------------------//
// --------------------------------------------------------------------------//
// Initializing input ports
// --------------------------------------------------------------------------//
// --------------------------------------------------------------------------//
p_in.clear();
// cout << "Initializing input ports of " << name() << endl;
// 0 is row, 1 is column
p_in.push_back(make_unique<port_in_type>("IN_R"));
p_in.push_back(make_unique<port_in_type>("IN_C"));
// --------------------------------------------------------------------------//
// --------------------------------------------------------------------------//
// Initializing output ports based on termination
// --------------------------------------------------------------------------//
// --------------------------------------------------------------------------//
p_out.clear();
// cout << "Initializing output ports of " << name() << endl;
// If there is only one output, the vector has only one element
if (m_term_row && m_term_col)
{
; // no optical output
}
else if(m_term_row)
{
// Last row, so only has row outputs
p_out.push_back(make_unique<port_out_type>("OUT_R"));
}
else if(m_term_col)
{
// Last column, so only has only column outputs
p_out.push_back(make_unique<port_out_type>("OUT_C"));
}
else
{
// Internal elements have both outputs
p_out.push_back(make_unique<port_out_type>("OUT_R"));
p_out.push_back(make_unique<port_out_type>("OUT_C"));
}
p_readout = make_unique<sc_out<double>>("OUT_PD");
// cout << "Successful port initialization of " << name() << endl;
}
void OctaneSegment::init()
{
if(m_isCompact)
init_compact();
else
init_full();
}
void OctaneSegment::init_full()
{
// Physical parameters of the components
double lambda = 1550e-9; // the wavelength used by the circuit
double neff = 2.2;
double ng = 2.2;
double loss_per_cm = 0; // in waveguide
double dc_loss = 0;
double length_for_2pi = 100*lambda/(neff);
double length_for_pi_2 = length_for_2pi/4;
// --------------------------------------------------------------------------//
// --------------------------------------------------------------------------//
// Initializing circuit elements (waveguides, DCs, octanecell)
// --------------------------------------------------------------------------//
// --------------------------------------------------------------------------//
m_wg.clear();
m_dc.clear();
m_optical_connect.clear();
// cout << "Initializing submodules of " << name() << endl;
m_oct = make_unique<OctaneCell>(__modname("OCT_", 0), m_meltEnergy, m_nStates, m_isCompact);
m_oct->init();
if (m_term_row && m_term_col)
{
// Last element
for(size_t i = 0; i < 2; i++)
{
m_wg.push_back(make_unique<Waveguide>(__modname("WG_", i), length_for_2pi, loss_per_cm, neff, ng));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("W_", i)));
}
}
else if(m_term_row)
{
// Last row
m_dc.push_back(make_unique<DirectionalCoupler>(__modname("DC_R_", 0), m_coupling_through_row, dc_loss));
for(size_t i = 0; i < 4; i++)
{
m_wg.push_back(make_unique<Waveguide>(__modname("WG_", i), length_for_2pi, loss_per_cm, neff, ng));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("W_", i)));
}
// Adjusting the last waveguide to give pi/2 shift
// compensating for the lack of DC
m_wg.at(3)->m_length_cm = length_for_2pi + length_for_pi_2;
// We have one extra wire with respect to waveguides
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("W_", 4)));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("TERM_", 0))); // terminator
}
else if(m_term_col)
{
// Last column
m_dc.push_back(make_unique<DirectionalCoupler>(__modname("DC_C_", 0), m_coupling_through_col, dc_loss));
for(size_t i = 0; i < 4; i++)
{
m_wg.push_back(make_unique<Waveguide>(__modname("WG_", i), length_for_2pi, loss_per_cm, neff, ng));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("W_", i)));
}
// Adjusting the last waveguide to give pi/2 shift
// compensating for the lack of DC
m_wg.at(3)->m_length_cm = length_for_2pi + length_for_pi_2;
// We have one extra wire with respect to waveguides
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("W_", 4)));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("TERM_", 0))); // terminator
}
else
{
// Internal element
m_dc.push_back(make_unique<DirectionalCoupler>(__modname("DC_R_", 0), m_coupling_through_row, dc_loss));
m_dc.push_back(make_unique<DirectionalCoupler>(__modname("DC_C_", 0), m_coupling_through_col, dc_loss));
for(size_t i = 0; i < 6; i++)
{
m_wg.push_back(make_unique<Waveguide>(__modname("WG_", i), length_for_2pi, loss_per_cm, neff, ng));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("W_", i)));
}
// We have two extra wires with respect to waveguides
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("W_", 6)));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("W_", 7)));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("TERM_", 0))); // terminator
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("TERM_", 1))); // terminator
}
// cout << "Successful module initialization of " << name() << endl;
// Modules are constructed in their vectors, time to connect !
connect_submodules_full();
}
void OctaneSegment::connect_submodules_full()
{
// cout << "Connecting submodules of " << name() << endl;
if (m_term_row && m_term_col)
{
// Last element
m_wg.at(0)->p_in(*p_in.at(0));
m_wg.at(0)->p_out(*m_optical_connect.at(0));
m_wg.at(1)->p_in(*p_in.at(1));
m_wg.at(1)->p_out(*m_optical_connect.at(1));
m_oct->p_in_r(*m_optical_connect.at(0));
m_oct->p_in_c(*m_optical_connect.at(1));
}
else if(m_term_row)
{
// Last row
m_wg.at(0)->p_in(*p_in.at(0)); // input at row
m_wg.at(0)->p_out(*m_optical_connect.at(0));
m_dc.at(0)->p_in1(*m_optical_connect.at(0));
m_dc.at(0)->p_in2(*m_optical_connect.at(5)); // Terminated
m_dc.at(0)->p_out1(*m_optical_connect.at(1)); // Through
m_dc.at(0)->p_out2(*m_optical_connect.at(2)); // Cross
m_wg.at(1)->p_in(*m_optical_connect.at(1));
m_wg.at(1)->p_out(*p_out.at(0)); // Out row
m_wg.at(2)->p_in(*m_optical_connect.at(2));
m_wg.at(2)->p_out(*m_optical_connect.at(3));
// Side without DC (must be conmpensated with pi/2)
m_wg.at(3)->p_in(*p_in.at(1));
m_wg.at(3)->p_out(*m_optical_connect.at(4));
m_oct->p_in_r(*m_optical_connect.at(3));
m_oct->p_in_c(*m_optical_connect.at(4));
}
else if(m_term_col)
{
// Last column
m_wg.at(0)->p_in(*p_in.at(1)); // input at col
m_wg.at(0)->p_out(*m_optical_connect.at(0));
m_dc.at(0)->p_in1(*m_optical_connect.at(0));
m_dc.at(0)->p_in2(*m_optical_connect.at(5)); // Terminated
m_dc.at(0)->p_out1(*m_optical_connect.at(1)); // Through
m_dc.at(0)->p_out2(*m_optical_connect.at(2)); // Cross
m_wg.at(1)->p_in(*m_optical_connect.at(1));
m_wg.at(1)->p_out(*p_out.at(0)); // Out column
m_wg.at(2)->p_in(*m_optical_connect.at(2));
m_wg.at(2)->p_out(*m_optical_connect.at(3));
// Side without DC (must be conmpensated with pi/2)
m_wg.at(3)->p_in(*p_in.at(0));
m_wg.at(3)->p_out(*m_optical_connect.at(4));
m_oct->p_in_r(*m_optical_connect.at(4));
m_oct->p_in_c(*m_optical_connect.at(3));
}
else
{
// Internal element
m_wg.at(0)->p_in(*p_in.at(0)); // input at row
m_wg.at(0)->p_out(*m_optical_connect.at(0));
m_dc.at(0)->p_in1(*m_optical_connect.at(0));
m_dc.at(0)->p_in2(*m_optical_connect.at(8)); // Terminated
m_dc.at(0)->p_out1(*m_optical_connect.at(1)); // Through
m_dc.at(0)->p_out2(*m_optical_connect.at(2)); // Cross
m_wg.at(1)->p_in(*m_optical_connect.at(1));
m_wg.at(1)->p_out(*p_out.at(0)); // Out row
m_wg.at(2)->p_in(*m_optical_connect.at(2));
m_wg.at(2)->p_out(*m_optical_connect.at(3));
m_wg.at(3)->p_in(*p_in.at(1));
m_wg.at(3)->p_out(*m_optical_connect.at(4));
m_dc.at(1)->p_in1(*m_optical_connect.at(4));
m_dc.at(1)->p_in2(*m_optical_connect.at(9)); // Terminated
m_dc.at(1)->p_out1(*m_optical_connect.at(5)); // Through
m_dc.at(1)->p_out2(*m_optical_connect.at(6)); // Cross
m_wg.at(4)->p_in(*m_optical_connect.at(5));
m_wg.at(4)->p_out(*p_out.at(1)); // Out col
m_wg.at(5)->p_in(*m_optical_connect.at(6));
m_wg.at(5)->p_out(*m_optical_connect.at(7));
m_oct->p_in_r(*m_optical_connect.at(3));
m_oct->p_in_c(*m_optical_connect.at(7));
}
m_oct->p_readout(*p_readout);
// cout << "Successful connection of " << name() << endl;
}
void OctaneSegment::init_compact()
{
// Physical parameters of the components
double lambda = 1550e-9; // the wavelength used by the circuit
double neff = 2.2;
double ng = 2.2;
double loss_per_cm = 0; // in waveguide
double dc_loss = 0;
double length_for_2pi = 100*lambda/(neff);
double length_for_pi_2 = length_for_2pi/4;
// --------------------------------------------------------------------------//
// --------------------------------------------------------------------------//
// Initializing circuit elements (waveguides, DCs, octanecell)
// --------------------------------------------------------------------------//
// --------------------------------------------------------------------------//
m_wg.clear();
m_dc.clear();
m_optical_connect.clear();
// cout << "Initializing submodules of " << name() << endl;
m_oct = make_unique<OctaneCell>(__modname("OCT_", 0), m_meltEnergy, m_nStates, m_isCompact);
m_oct->init();
if (m_term_row && m_term_col)
{
;
}
else if(m_term_row)
{
// Last row
m_dc.push_back(make_unique<DirectionalCoupler>(__modname("DC_R_", 0), m_coupling_through_row, dc_loss));
m_wg.push_back(make_unique<Waveguide>(__modname("WG_", 0), length_for_pi_2, loss_per_cm, neff, ng));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("W_", 0)));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("W_", 1)));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("TERM_", 0))); // terminator
}
else if(m_term_col)
{
// Last column
m_dc.push_back(make_unique<DirectionalCoupler>(__modname("DC_C_", 0), m_coupling_through_col, dc_loss));
m_wg.push_back(make_unique<Waveguide>(__modname("WG_", 0), length_for_pi_2, loss_per_cm, neff, ng));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("W_", 0)));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("W_", 1)));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("TERM_", 0))); // terminator
}
else
{
// Internal element
m_dc.push_back(make_unique<DirectionalCoupler>(__modname("DC_R_", 0), m_coupling_through_row, dc_loss));
m_dc.push_back(make_unique<DirectionalCoupler>(__modname("DC_C_", 0), m_coupling_through_col, dc_loss));
// We have two extra wires with respect to waveguides
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("W_", 0)));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("W_", 1)));
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("TERM_", 0))); // terminator
m_optical_connect.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("TERM_", 1))); // terminator
}
// cout << "Successful module initialization of " << name() << endl;
// Modules are constructed in their vectors, time to connect !
connect_submodules_compact();
}
void OctaneSegment::connect_submodules_compact()
{
// cout << "Connecting submodules of " << name() << endl;
if (m_term_row && m_term_col)
{
// Last element
m_oct->p_in_r(*p_in.at(0));
m_oct->p_in_c(*p_in.at(1));
}
else if(m_term_row)
{
// Last row
m_dc.at(0)->p_in1(*p_in.at(0));
m_dc.at(0)->p_in2(*m_optical_connect.at(2)); // Terminated
m_dc.at(0)->p_out1(*p_out.at(0)); // Through
m_dc.at(0)->p_out2(*m_optical_connect.at(0)); // Cross
// Side without DC (must be conmpensated with pi/2)
m_wg.at(0)->p_in(*p_in.at(1));
m_wg.at(0)->p_out(*m_optical_connect.at(1));
m_oct->p_in_r(*m_optical_connect.at(0));
m_oct->p_in_c(*m_optical_connect.at(1));
}
else if(m_term_col)
{
// Last column
m_dc.at(0)->p_in1(*p_in.at(1));
m_dc.at(0)->p_in2(*m_optical_connect.at(2)); // Terminated
m_dc.at(0)->p_out1(*p_out.at(0)); // Through
m_dc.at(0)->p_out2(*m_optical_connect.at(0)); // Cross
// Side without DC (must be conmpensated with pi/2)
m_wg.at(0)->p_in(*p_in.at(0));
m_wg.at(0)->p_out(*m_optical_connect.at(1));
m_oct->p_in_r(*m_optical_connect.at(1));
m_oct->p_in_c(*m_optical_connect.at(0));
}
else
{
// Internal element
m_dc.at(0)->p_in1(*p_in.at(0));
m_dc.at(0)->p_in2(*m_optical_connect.at(2)); // Terminated
m_dc.at(0)->p_out1(*p_out.at(0)); // Through
m_dc.at(0)->p_out2(*m_optical_connect.at(0)); // Cross
m_dc.at(1)->p_in1(*p_in.at(1));
m_dc.at(1)->p_in2(*m_optical_connect.at(3)); // Terminated
m_dc.at(1)->p_out1(*p_out.at(1)); // Through
m_dc.at(1)->p_out2(*m_optical_connect.at(1)); // Cross
m_oct->p_in_r(*m_optical_connect.at(0));
m_oct->p_in_c(*m_optical_connect.at(1));
}
m_oct->p_readout(*p_readout);
// cout << "Successful connection of " << name() << endl;
}
|