1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
#include <octane_matrix.h>
#define __modname(SUFFIX, IDX) \
((""s + this->name() + "_" + SUFFIX + to_string(IDX)).c_str())
#define __outname(SUFFIX, IDX, IDY) \
((""s + this->name() + "_" + SUFFIX + to_string(IDX) + "_" + to_string(IDY)).c_str())
using std::size_t;
using std::pow;
void OctaneMatrix::init_ports()
{
// --------------------------------------------------------------------------//
// --------------------------------------------------------------------------//
// Initializing input ports
// --------------------------------------------------------------------------//
// --------------------------------------------------------------------------//
p_in_r.clear();
p_in_c.clear();
// cout << "Initializing input ports of " << name() << endl;
for(size_t i = 0; i < m_rows; i++)
p_in_r.push_back(make_unique<port_in_type>(__modname("IN_R_", i)));
for(size_t i = 0; i < m_columns; i++)
p_in_c.push_back(make_unique<port_in_type>(__modname("IN_C_", i)));
// --------------------------------------------------------------------------//
// --------------------------------------------------------------------------//
// Initializing output port matrix
// --------------------------------------------------------------------------//
// --------------------------------------------------------------------------//
p_readout.clear(); // clearing before start
// cout << "Initializing output ports of " << name() << endl;
vector<unique_ptr<sc_out<double>>> temp_vector;
for(size_t i = 0; i < m_rows; i++)
{
temp_vector.clear(); // moving to new row
for(size_t j = 0; j < m_columns; j++)
{
temp_vector.push_back(make_unique<sc_out<double>>(__outname("PD_", i, j)));
}
p_readout.push_back(std::move(temp_vector)); // adding new row
}
// cout << "Successful port initialization of " << name() << endl;
}
void OctaneMatrix::init()
{
double crossing_loss = 0;
// --------------------------------------------------------------------------//
// --------------------------------------------------------------------------//
// Initializing circuit elements (waveguides, DCs, octanecell)
// --------------------------------------------------------------------------//
// --------------------------------------------------------------------------//
m_optical_connect_horizontal.clear();
m_optical_connect_vertical.clear();
m_segment.clear();
m_cross.clear();
// cout << "Initializing submodules of " << name() << endl;
// Optical wires
unsigned long num_of_nets_horizontal = 3*m_rows*(m_columns-1);
unsigned long num_of_nets_vertical = (m_rows-1)*m_columns;
for(unsigned long i = 0; i < num_of_nets_horizontal; i++)
m_optical_connect_horizontal.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("wh_", i)));
for(unsigned long i = 0; i < num_of_nets_vertical; i++)
m_optical_connect_vertical.push_back(make_unique<sc_signal<OpticalSignal>>(__modname("wv_", i)));
// Crossings
for(unsigned long i = 0; i < m_rows; i++)
{ // Last column doesn't have crossings, thus the -1 in the loop
for(unsigned long j = 0; j < (m_columns - 1); j++)
{
m_cross.push_back(make_unique<Crossing>(__outname("X_", i, j), crossing_loss));
}
}
// Octane segments
bool term_row = false;
bool term_col = false;
double coupling_through_row = 0;
double coupling_through_col = 0;
for(unsigned long i = 0; i < m_rows; i++)
{
for(unsigned long j = 0; j < m_columns; j++)
{
if(isLastRow(i) && isLastCol(j))
{
// Last element
term_col = true;
term_row = true;
coupling_through_row = 0;
coupling_through_col = 0;
}
else if(isLastRow(i))
{
// Term row
term_col = false;
term_row = true;
coupling_through_row = (1.0 - 1.0/(m_columns - j));
coupling_through_col = 0;
}
else if(isLastCol(j))
{
// Term col
term_col = true;
term_row = false;
coupling_through_row = 0;
coupling_through_col = (1.0 - 1.0/(m_rows - i));
}
else
{
// Inner element
term_col = false;
term_row = false;
coupling_through_row = (1.0 - 1.0/(m_columns - j));
coupling_through_col = (1.0 - 1.0/(m_rows - i));
}
auto temp_segment = make_unique<OctaneSegment>
(
__outname("SEG_", i, j),
term_row, term_col,
coupling_through_row, coupling_through_col,
m_meltEnergy, m_nStates, m_isCompact
);
temp_segment->init(); // mandatory initialization
m_segment.push_back(std::move(temp_segment));
}
}
// cout << "Successful module initialization of " << name() << endl;
// Modules are constructed in their vectors, time to connect !
connect_submodules();
}
void OctaneMatrix::connect_submodules()
{
// cout << "Connecting submodules of " << name() << endl;
// If there is only one element in the matrix
// the pins are connected directly
if((m_rows == 1) && (m_columns == 1))
{
// cout << name() << "contains only one element. " << endl;
m_segment.at(0)->p_in[0]->bind(*p_in_r.at(0));
m_segment.at(0)->p_in[1]->bind(*p_in_c.at(0));
m_segment.at(0)->p_readout->bind(*p_readout[0][0]);
// cout << "Successful connection of " << name() << endl;
return;
}
// Column vector
if(m_columns == 1)
{
// cout << name() << "contains only one column. " << endl;
for(unsigned long i = 0; i < m_rows; i++)
{
// in segment, in row is p_in[0]
m_segment.at(i)->p_in[0]->bind(*p_in_r.at(i));
if(isFirstRow(i)) // should connect to the port
m_segment.at(i)->p_in[1]->bind(*p_in_c.at(0));
else // connects to intermediate net which is output of the previous block
m_segment.at(i)->p_in[1]->bind(*m_optical_connect_vertical.at(i-1));
if(!isLastRow(i)) // there's only one output in vector segment
m_segment.at(i)->p_out[0]->bind(*m_optical_connect_vertical.at(i));
m_segment.at(i)->p_readout->bind(*p_readout[i][0]);
}
// cout << "Successful connection of " << name() << endl;
return;
}
// Row vector
if(m_rows == 1)
{
// cout << name() << "contains only one row. " << endl;
for(unsigned long j = 0; j < m_columns; j++)
{
if(isFirstCol(j))
{
// in segment, in row is p_in[0]
m_segment.at(j)->p_in[0]->bind(*p_in_r.at(0));
m_segment.at(j)->p_in[1]->bind(*m_optical_connect_horizontal.at(3*j+1));
m_segment.at(j)->p_out[0]->bind(*m_optical_connect_horizontal.at(3*j));
// in1, out1 are horizontal connections
m_cross.at(j)->p_in1.bind(*m_optical_connect_horizontal.at(3*j));
m_cross.at(j)->p_in2.bind(*p_in_c.at(j));
m_cross.at(j)->p_out1.bind(*m_optical_connect_horizontal.at(3*j+2));
m_cross.at(j)->p_out2.bind(*m_optical_connect_horizontal.at(3*j+1));
}
else if(!isLastCol(j))
{ // middle element
m_segment.at(j)->p_in[0]->bind(*m_optical_connect_horizontal.at(3*j-1));
m_segment.at(j)->p_in[1]->bind(*m_optical_connect_horizontal.at(3*j+1));
m_segment.at(j)->p_out[0]->bind(*m_optical_connect_horizontal.at(3*j));
// in1, out1 are horizontal connections
m_cross.at(j)->p_in1.bind(*m_optical_connect_horizontal.at(3*j));
m_cross.at(j)->p_in2.bind(*p_in_c.at(j));
m_cross.at(j)->p_out1.bind(*m_optical_connect_horizontal.at(3*j+2));
m_cross.at(j)->p_out2.bind(*m_optical_connect_horizontal.at(3*j+1));
}
else
{ // last column here
m_segment.at(j)->p_in[0]->bind(*m_optical_connect_horizontal.at(3*j-1));
m_segment.at(j)->p_in[1]->bind(*p_in_c.at(j));
}
m_segment.at(j)->p_readout->bind(*p_readout[0][j]);
}
// cout << "Successful connection of " << name() << endl;
return;
}
// Getting here means it's an actual matrix with more than one element
unsigned long cur_pos;
unsigned long cur_cross;
unsigned long seg_out_h;
unsigned long seg_out_v;
for(unsigned long i = 0; i < m_rows; i++)
{
for(unsigned long j = 0; j < m_columns; j++)
{
cur_pos = m_columns*i + j;
cur_cross = (m_columns-1)*i + j;
seg_out_h = 3*(m_columns-1)*i+3*j;
seg_out_v = m_columns*i+j;
// cout << "cur_pos: " << cur_pos << endl;
// cout << "cur_cross: " << cur_cross << endl;
// cout << "out_h: " << seg_out_h << endl;
// cout << "out_v: " << seg_out_v << endl;
if(isFirstRow(i) && isFirstCol(j))
{
// cout << "first element" << endl;
m_segment.at(cur_pos)->p_in[0]->bind(*p_in_r.at(i));
m_segment.at(cur_pos)->p_in[1]->bind(*m_optical_connect_horizontal.at(seg_out_h+1));
m_segment.at(cur_pos)->p_out[0]->bind(*m_optical_connect_horizontal.at(seg_out_h));
m_segment.at(cur_pos)->p_out[1]->bind(*m_optical_connect_vertical.at(seg_out_v));
m_cross.at(cur_cross)->p_in1.bind(*m_optical_connect_horizontal.at(seg_out_h));
m_cross.at(cur_cross)->p_in2.bind(*p_in_c.at(j));
m_cross.at(cur_cross)->p_out1.bind(*m_optical_connect_horizontal.at(seg_out_h+2));
m_cross.at(cur_cross)->p_out2.bind(*m_optical_connect_horizontal.at(seg_out_h+1));
}
else if(isFirstRow(i) && !isLastCol(j))
{
// cout << "first row not last col" << endl;
m_segment.at(cur_pos)->p_in[0]->bind(*m_optical_connect_horizontal.at(seg_out_h-1));
m_segment.at(cur_pos)->p_in[1]->bind(*m_optical_connect_horizontal.at(seg_out_h+1));
m_segment.at(cur_pos)->p_out[0]->bind(*m_optical_connect_horizontal.at(seg_out_h));
m_segment.at(cur_pos)->p_out[1]->bind(*m_optical_connect_vertical.at(seg_out_v));
m_cross.at(cur_cross)->p_in1.bind(*m_optical_connect_horizontal.at(seg_out_h));
m_cross.at(cur_cross)->p_in2.bind(*p_in_c.at(j));
m_cross.at(cur_cross)->p_out1.bind(*m_optical_connect_horizontal.at(seg_out_h+2));
m_cross.at(cur_cross)->p_out2.bind(*m_optical_connect_horizontal.at(seg_out_h+1));
}
else if(isFirstRow(i) && isLastCol(j))
{
// cout << "first row last col" << endl;
m_segment.at(cur_pos)->p_in[0]->bind(*m_optical_connect_horizontal.at(seg_out_h-1));
m_segment.at(cur_pos)->p_in[1]->bind(*p_in_c.at(j));
// no row output
m_segment.at(cur_pos)->p_out[0]->bind(*m_optical_connect_vertical.at(seg_out_v));
}
else if(!isFirstRow(i) && !isLastRow(i) && isFirstCol(j))
{
// cout << "middle row first col" << endl;
m_segment.at(cur_pos)->p_in[0]->bind(*p_in_r.at(i));
m_segment.at(cur_pos)->p_in[1]->bind(*m_optical_connect_horizontal.at(seg_out_h+1));
m_segment.at(cur_pos)->p_out[0]->bind(*m_optical_connect_horizontal.at(seg_out_h));
m_segment.at(cur_pos)->p_out[1]->bind(*m_optical_connect_vertical.at(seg_out_v));
m_cross.at(cur_cross)->p_in1.bind(*m_optical_connect_horizontal.at(seg_out_h));
m_cross.at(cur_cross)->p_in2.bind(*m_optical_connect_vertical.at(seg_out_v-m_columns));
m_cross.at(cur_cross)->p_out1.bind(*m_optical_connect_horizontal.at(seg_out_h+2));
m_cross.at(cur_cross)->p_out2.bind(*m_optical_connect_horizontal.at(seg_out_h+1));
}
else if(!isFirstRow(i) && !isLastRow(i) && !isLastCol(j))
{
// cout << "middle row middle col" << endl;
m_segment.at(cur_pos)->p_in[0]->bind(*m_optical_connect_horizontal.at(seg_out_h-1));
m_segment.at(cur_pos)->p_in[1]->bind(*m_optical_connect_horizontal.at(seg_out_h+1));
m_segment.at(cur_pos)->p_out[0]->bind(*m_optical_connect_horizontal.at(seg_out_h));
m_segment.at(cur_pos)->p_out[1]->bind(*m_optical_connect_vertical.at(seg_out_v));
m_cross.at(cur_cross)->p_in1.bind(*m_optical_connect_horizontal.at(seg_out_h));
m_cross.at(cur_cross)->p_in2.bind(*m_optical_connect_vertical.at(seg_out_v-m_columns));
m_cross.at(cur_cross)->p_out1.bind(*m_optical_connect_horizontal.at(seg_out_h+2));
m_cross.at(cur_cross)->p_out2.bind(*m_optical_connect_horizontal.at(seg_out_h+1));
}
else if(!isFirstRow(i) && !isLastRow(i) && isLastCol(j))
{
// cout << "middle row last col" << endl;
m_segment.at(cur_pos)->p_in[0]->bind(*m_optical_connect_horizontal.at(seg_out_h-1));
m_segment.at(cur_pos)->p_in[1]->bind(*m_optical_connect_vertical.at(seg_out_v-m_columns));
// no row output
m_segment.at(cur_pos)->p_out[0]->bind(*m_optical_connect_vertical.at(seg_out_v));
}
else if(isLastRow(i) && isFirstCol(j))
{
// cout << "last row first col" << endl;
m_segment.at(cur_pos)->p_in[0]->bind(*p_in_r.at(i));
m_segment.at(cur_pos)->p_in[1]->bind(*m_optical_connect_horizontal.at(seg_out_h+1));
m_segment.at(cur_pos)->p_out[0]->bind(*m_optical_connect_horizontal.at(seg_out_h));
m_cross.at(cur_cross)->p_in1.bind(*m_optical_connect_horizontal.at(seg_out_h));
m_cross.at(cur_cross)->p_in2.bind(*m_optical_connect_vertical.at(seg_out_v-m_columns));
m_cross.at(cur_cross)->p_out1.bind(*m_optical_connect_horizontal.at(seg_out_h+2));
m_cross.at(cur_cross)->p_out2.bind(*m_optical_connect_horizontal.at(seg_out_h+1));
}
else if(isLastRow(i) && !isLastCol(j))
{
// cout << "last row middle col" << endl;
m_segment.at(cur_pos)->p_in[0]->bind(*m_optical_connect_horizontal.at(seg_out_h-1));
m_segment.at(cur_pos)->p_in[1]->bind(*m_optical_connect_horizontal.at(seg_out_h+1));
m_segment.at(cur_pos)->p_out[0]->bind(*m_optical_connect_horizontal.at(seg_out_h));
m_cross.at(cur_cross)->p_in1.bind(*m_optical_connect_horizontal.at(seg_out_h));
m_cross.at(cur_cross)->p_in2.bind(*m_optical_connect_vertical.at(seg_out_v-m_columns));
m_cross.at(cur_cross)->p_out1.bind(*m_optical_connect_horizontal.at(seg_out_h+2));
m_cross.at(cur_cross)->p_out2.bind(*m_optical_connect_horizontal.at(seg_out_h+1));
}
else if(isLastRow(i) && isLastCol(j))
{
// cout << "last row last col" << endl;
m_segment.at(cur_pos)->p_in[0]->bind(*m_optical_connect_horizontal.at(seg_out_h-1));
m_segment.at(cur_pos)->p_in[1]->bind(*m_optical_connect_vertical.at(seg_out_v-m_columns));
}
else
cout<< endl << endl << "This condition should not appear" << endl << endl;
m_segment.at(cur_pos)->p_readout->bind(*p_readout[i][j]);
}
}
}
|