aboutsummaryrefslogtreecommitdiff
path: root/src/devices/generic_transmission_device.cpp
blob: e709109534f68516f038c5c16f3280d85fc144c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#include "devices/generic_transmission_device.h"

#define __modname(SUFFIX, IDX) \
    ((""s + this->name() + SUFFIX + "_" + to_string(IDX)).c_str())

using std::size_t;
using std::pow;

TransmissionMatrix::paramset_type TransmissionMatrix::operator()(const size_t &i, const size_t &j
    , const wavelength_type &lambda, const size_t max_order) const
{
    // row/col to index
    const size_t k = i * N + j;

    if (Mactive[k] == false)
        return {0,0,0};

    if (max_order == 0)
        return {Malpha[k][0], Mphi[k][0], Mtau[k][0]};

    // Alias relevant taylor series
    auto &Malpha_ = Malpha[k];
    auto &Mphi_ = Mphi[k];
    auto &Mtau_ = Mtau[k];

    // Get initial parameters (values at lambda0)
    double alpha = Malpha_[0];
    double phi = Mphi_[0];
    double tau = Mtau_[0];

    // Calculate distance to lambda0
    const wavelength_type dlambda = lambda - lambda0;

    // Perform taylor expansion of alpha
    double dlambda_n_over_fact_n = 1.0;
    for (size_t order = 1; order < min(1 + max_order, Malpha_.size()); ++order)
    {
        double dalpha_over_dlambda_n = Malpha_[order];
        dlambda_n_over_fact_n *= dlambda / order;
        alpha += dalpha_over_dlambda_n * dlambda_n_over_fact_n;
    }

    // Perform taylor expansion of phi
    dlambda_n_over_fact_n = 1.0;
    for (size_t order = 1; order < min(1 + max_order, Mphi_.size()); ++order)
    {
        double dphi_over_dlambda_n = Mphi_[order];
        dlambda_n_over_fact_n *= dlambda / order;
        phi += dphi_over_dlambda_n * dlambda_n_over_fact_n;
    }

    // Perform taylor expansion of tau
    dlambda_n_over_fact_n = 1.0;
    for (size_t order = 1; order < min(1 + max_order, Mtau_.size()); ++order)
    {
        double dtau_over_dlambda_n = Mtau_[order];
        dlambda_n_over_fact_n *= dlambda / order;
        tau += dtau_over_dlambda_n * dlambda_n_over_fact_n;
    }

    //cout << lambda << ": " << alpha << ", " << fmod(phi, 2*M_PI) << ", " << tau << endl;
    return {alpha,phi,tau};
}

void GenericTransmissionDevice::pre_init()
{
    ports_in.clear();
    ports_out.clear();
    ports_out_writers.clear();

    for (size_t i = 0; i < nports; ++i)
    {
        ports_in.push_back(make_shared<port_in_type>(__modname("_IN", i)));
        ports_out.push_back(make_shared<port_out_type>(__modname("_OUT", i)));
        ports_out_writers.push_back(make_shared<OpticalOutputPort>(__modname("_OOP", i), (*ports_out[i])));
        ports_out_writers[i]->m_use_deltas = true;
    }
}

void GenericTransmissionDevice::init()
{
    prepareTM();
    assert(nports == TM.N);
    for (size_t i = 0; i < nports; ++i)
    {
        for (size_t j = 0; j < nports; ++j)
        {
            sc_spawn_options opts;
            if (TM.isActive(i, j))
            {
                opts.set_sensitivity(ports_in[i].get());
                sc_spawn( sc_bind(&GenericTransmissionDevice::input_on_i_output_on_j, this, i, j), 
                    (string(name()) + "process_" + to_string(i) + "_" + to_string(j)).c_str(), &opts);
            }
        }
    }
}

string GenericTransmissionDevice::describe() const
{
    return ""s;
}

void GenericTransmissionDevice::input_on_i(size_t i)
{
    auto last_signal = OpticalSignal(0);
    const auto &p_in = (*ports_in[i]);
    const bool active = TM.isInputActive(i);

    while(active)
    {
        // Wait for new input on i_in
        wait();

        // Read new input from i_in
        const auto &s = p_in->read();

        // cout << "received:" << endl << "\t" << s;

        // Compute delta
        const auto deltaE_in = s - last_signal;

        // Store new input signal for next change
        last_signal = s;

        // Loop on all device ports
        for (size_t j = 0; j < nports; ++j)
        {
            if (!TM.isActive(i,j))
                continue;
            // cout << "(i,j):" << i << ", " << j << endl;

            // Get transmission parameters at this wavelength
            auto Tij = TM(i, j, s.getWavelength());

            // Apply parameters
            auto deltaE_out = deltaE_in * polar(Tij.alpha, Tij.phi);

            // cout << Tij.alpha << ", " << Tij.phi << ", " << Tij.tau << endl;

            deltaE_out.getNewId();

            // Schedule writing the change in output port
            ports_out_writers[j]->delayedWrite(deltaE_out, sc_time(Tij.tau, SC_SEC));
        }
    }
    while (true) { wait(); }
}

void GenericTransmissionDevice::input_on_i_output_on_j(size_t i, size_t j)
{
    auto last_signal = OpticalSignal(0);
    const auto &p_in = (*ports_in[i]);
    //auto &p_out = (*ports_out[j]);
    auto &p_out_writer = (*ports_out_writers[j]);
    const bool active = TM.isActive(i, j);
    cout << i << ", " << j << " is active" << endl;

    // Block if non active
    while (!active) { wait(); }

    complex<double> Sij;
    double delay;
    
    // Wait for first signal to calculate Sij and delay
    volatile bool init_done = false;
    while (!init_done)
    {
        // Wait for first input on p_in
        wait();

        // Read new input from i_in
        const auto &s = p_in->read();

        // cout << "received:" << endl << "\t" << s << endl;

        if (isnan(s.getWavelength()))
            continue;

        // Find Sij at that wavelength
        const auto Tij = TM(i, j, s.getWavelength());
        Sij = polar(Tij.alpha, Tij.phi);
        delay = Tij.tau;
        
        auto deltaE = (s - last_signal) * Sij;
        last_signal = s;
        p_out_writer.delayedWrite(deltaE, sc_time(delay, SC_SEC));

        init_done = true;

        // cout << "init done:" << endl << "\t" << norm(Sij) << ", " << arg(Sij) << ", " << delay << endl;
    }

    while(true)
    {
        // Wait for new input on i_in
        wait();

        // Read new input from i_in
        const auto &s = p_in->read();

        if (s.getWavelength() != last_signal.getWavelength())
        {
            cerr << "Cannot handle different wavelength (" << __FUNCTION__ << ")" << endl;
            cerr << s << endl;
            cerr << last_signal << endl;
            sc_stop();
        }

        // cout << "received:" << endl << "\t" << s << endl;

        // Compute new delta
        auto deltaE = (s - last_signal) * Sij;

        // Store new input signal for next change
        last_signal = s;

        //deltaE_out.getNewId();

        // Schedule writing the change in output port
        p_out_writer.delayedWrite(deltaE, sc_time(delay, SC_SEC));
        //wait(SC_ZERO_TIME);
    }
}